Chapter #7
Activation

· Each Execution of a procedure

· Several activations of a recursive procedure may be alive at the same time.

Flow of Control Among Procedure

1) Control flows sequentially.
2) Each execution of a procedure starts at the beginning of the procedure body and eventually returns control to the point immediately following the place where the procedure was called.
Activation Tree

· To depict the way, control enters and leaves activations, we can use a tree called activation tree.

Example:

Consider the:

void OddSum(){

}

void EvenSum(){

}

void main(){

OddSum();

EvenSum();

}

Property of Activation Tree

1. Each node represents an activation of procedure

2. The root represent the activation of main program

3. node for a is the parent of the node for b if and only if control flows from activation a to b
4. The node for a is to the left of the node for b if and only if the lifetime of a occurs before the lifetime of b.

Example

Consider the following C++ program

int location, data[10];

void readdata(){for(int i=0;i<10;i++) cin>>data[i];}

int BinarySearch(int x, int i, int j){

int m;

m=int((i + j)/2);

if(x==data[m]) return m

else if(x<dada[m] && i<m) BinarySearch(x, i, m-1);

else if(x>dada[m] && j>m) BinarySearch(x, m+1,j);

else return (-1);

}

void main(){

int x;

readdata();

cin>>x;

location=BinarySearch(x,0,9);

cout<<location;

}

So the execution sequence is

	Procedure Name
	Shortly Denoted By

	main
	m

	readdat
	r

	BinarySearch
	b

Enter main

Enter readdata

Leave readdata

Enter BinarySearch

Enter BinarySearch

……

…..

…..

Leave BinarySearch

Leave BinarySearch

Leave main

Control Stack

· Is used to keep track of live procedure activations.

How Control Stacks Works

1. Push the node for an activation onto the control stack as the activation begins and pop it when the activation ends.

2. When node n is at the top of the control stack, the stack contains the nodes along the path from n to the root.

The Scope of a Declaration

Declaration:

 A declaration in a language is a syntactic construct that associates information with a name. This may be explicit or implicit. For example:

 int i,j;

Here i,j are two names that may store information of integer number

Scope:
The portion of the program to which a declaration applies is called the scope of that declaration.

When some name appears in different procedure, the scope rules of a language determine which declaration of a name applies when the name appears in the text of a program.

Bindings of Name

When we declare a variable two semantic rule work.

a) Environment: This term refers to a function that maps a name to a storage location

b) State: This term refers to a function that maps a storage location to the value held here.

 Fig: Two-stage mapping from names to values

They have a difference. An assignment changes the state, but not environment. For example, storage address 100 associated with variable pi, holds 0. After assignment pi=3.14, the same storage address is associated with pi, but the value helh there is 3.14.

Binding

When an environment associates storage location s with a name x, we say that x is bound to s. The association itself is referred to as a binding of x.

Storage Organization:
Subdivision of Run-Time Memory

Compiler holds a block of storage from the operating system to run program. The run-time memory might be subdivided to hold:

1. Generated target code

2. Data object

3. a counterpart of the control stack to keep track of procedure activation

Basically the storage is divided into four parts:

a) Code

b) Static data

c) Stack

d) Heap

	 Code

	Static Data

	Stack

	

	Heap

a. Code: store source program

b. Static Data: Store generated target code, some data object.

c. Stack: Store activation of the procedure, program counter, machine register
d. Heap: Hold all other information, where lifetime of an activation tree cannot be represented by activation tree, the heap is used to keep information about activations
main()

OddSum()

EvenSum()

Fig: Activation Tree for besides example

m

r

b(5,0,9)

b(5,0,3)

b(5,5,9)

b(5,8,9)

b(5,2,3)

b(5,5,6)

b(5,3,3)

b(5,6,6)

b(5,0,0)

b(5,9,9)

name

storage

value

environment

state

Stack and Heap both increase dynamically. Their size is variable. So they reserved space at the opposite end of memory. They can grow towards each other as needed.

