Chapter #8

Intermediate Code

Intermediate Code Generation:

Some benefits of using a machine-independent intermediate form are:

1. Retargeting is facilitated

2. A machine-independent code optimizer can be applied to the intermediate representation.

Position of intermediate code generator

Representation of intermediate code

Can be represented in three ways:

1. Syntax tree

2. Postfix notation

3. Three address Code

1. Syntax Tree/ Graphical Representation

· Depicts the natural Hierarchical structure of a source program.

· A dag gives the same information but in a more compact way because common sub-expressions are identified


(a) Syntax Tree






     (b) Dag


Fig1: Graphical representation of a= b * - c + b * - c

 A Syntax tree using syntax directed-directed definition

	Production


	Semantic Rules



	S ( id := E
	S.nptr := mknode(‘=’, mkleaf(id, id.entry), E.nptr)

	E ( E1 + E2
	E.nptr := mknode(‘+’, E1.nptr, E2.nptr)

	E ( E1 * E2
	E.nptr := mknode(‘*’, E1.nptr, E2.nptr)

	E ( -E1
	E.nptr := mkunode(‘-’, E1.nptr)

	E ( (E1)
	E.nptr := E1.nptr

	E ( id
	E.nptr := mkleaf(id, id.entry)


Here attribute entry of id points to the symbol table. mknode(op, left, right) and mkunode(op, child) return a pointer

	0
	id
	b
	

	1
	id
	c
	

	2
	-
	1
	

	3
	*
	0
	2

	4
	id
	b
	

	5
	id
	c
	

	6
	-
	5
	

	7
	*
	4
	6

	8
	+
	3
	7

	9
	id
	a
	

	10
	=
	9
	8

	11
	
	
	












(b)


(a)

Fig2: Two representation of the syntax tree of in fig1 (a)

2. Postfix Notation

· Linearized representation of a syntax tree

· a list of the nodes of the tree in which a node appear immediately after its children. The postfix notation of syntax tree of Fig1 (a) is—


a b c - * b c - * + =

3. Three Address Code

· is a sequence of statement of the form x := y op z  where x, y and z are names, constants or compiler-generated temporaries; op stands for any operator

· Linearized representation of a syntax tree or a dag in which explicit names correspond to the interior node of the graph.

· Each statement usually contains three address two for the operands and one for the result.

· So x + y * z might be translated into a sequence 

t1 := y * z 
and 
t2 := x + t1           where t1 and t2 are compiler-generated temporaries

The syntax tree and dag of fig1 are represented by the three-address code as follows:

(a) Code for the syntax tree


(b) Code for the dag 


Fig 3: Three address code corresponding to the syntax tree and dag in Fig1

Types of Three-Address Statements

Some common three address statements:

1. Assignment Statement: of the form x = y op z where op is a binary arithmetic or logical operation

2. Assignment Instruction: of the form x = op y

3. Copy Statement: of the x = y

4. Unconditional Jump: of the form  goto L. 
5. Conditional Jump: of the form if x relop y goto L

6. Procedure call: Suppose Xn are parameters in the procedure p and it returns y.
Then a call of the procedure p(x1, x2, x3, ….…, xn) may generate

param x1
param x2

  . . .

param xn
call p, n
7. Index Assignment: of the form x = y[i] and x[i] = y

8. Address and pointer Assignment: of the form x= &y, x= *y and *x = y

Implementation of Three-Address Statements:
Three such representations:

1. Quadruples

2. Triples

3. Indirect triples

1. Quadruples:

· Representation of record structure with four field—op, arg1, arg2 and result.

· Three address statement x = y op z is represented by placing y in arg1, z in arg2 and x in result.

· Statement x = -y or x = y do not use arg2

EX: -

Consider a statement a = b * - c + b * - c.

	
	op
	arg1
	arg2
	result

	(0)
	-
	c
	
	t1

	(1)
	*
	b
	t1
	t2

	(2)
	-
	c
	
	t3

	(3)
	*
	b
	t3
	t4

	(4)
	+
	t2
	t4
	t5

	(5)
	=
	t5
	
	a


(a) Three address code  

(b) Quadruples

Fig 4: Quadruples for the expression a = b * - c + b * - c

2. Triples

· To avoid temporary names into the symbol table

· can be represented by records with only three fields op, arg1 and arg2.

	
	op
	arg1
	arg2

	(0)
	-
	c
	

	(1)
	*
	b
	(0)

	(2)
	-
	c
	

	(3)
	*
	b
	(2)

	(4)
	+
	(1)
	(3)

	(5)
	=
	a
	(4)





Fig 5: Triples for the expression a = b * - c + b * - c

	
	Op
	arg1
	arg2
	
	
	op
	arg1
	arg2

	(0)
	[ ]=
	x
	I
	
	(0)
	=[ ]
	y
	i

	(1)
	=
	(0)
	Y
	
	(1)
	=
	x
	(0)


(a) Triples for x[i] = y 



(b) Triples for x = y[i]

Fig 6: Triples for Indexed statements

3. Indirect triples
· listing pointer to triples

· an array statement is used to list pointer to triples in the desired order

	
	statement
	
	
	op
	arg1
	arg2

	(0)
	(14)
	
	(14)
	-
	c
	

	(1)
	(15)
	
	(15)
	*
	b
	(14)

	(2)
	(16)
	
	(16)
	-
	c
	

	(3)
	(17)
	
	(17)
	*
	b
	(16)

	(4)
	(18)
	
	(18)
	+
	(15)
	(17)

	(5)
	(19)
	
	(19)
	=
	a
	(18)


(a) statement array



(b) triples

Fig 7: Indirect Triples

Parser





Intermediate code generator





Static Checker





Code Generator





Intermediate code





=





a





+





*





*





b





-





c





b





-





c





c





-





b





*





+





a





=





= 





+ 





* 





* 





id  a





id    b





-    





id  c





id    b





-   





id  c





t1 = - c


t2 = b * t1


t3 = - c


t4 = b * t3


t5 = t2  + t4


a= t5








t1 = - c


t2 = b * t1


t3 = t2 + t2


a= t3 








t1 = - c


t2 = b * t1


t3 = -c


t4 = b * t3


t5 = t2 + t4


a = t5











