Chapter #9

Code Generation

1. Issues in the Design of a code Generator

2. Input to the code generator

3. Target programs

4. Memory Management

5. Instruction Selection

6. Register Allocation

7. Choice of evaluation order

8. Approaches to code generation

· The Target Machine
· Familiar with the target machine and its instruction set is a prerequisite for designing a good code generator

· Our target computer is a byte-address machine with four byte to a word and n general purpose register R0, R1, R2, … … … Rn-1
· It has two address instructions of the form

op
source

destination

· in which op is a op-code, source and destination are data fields.

· It has the following op-code

MOV (move source to destination)

ADD (add source to destination)

· SUB (subtract source to destination)

· Few others instruction, GOTO, HALT etc also used.

· Address Mode and Cost:

· Contents (a) denotes the contents of the register or memory address represented by a.

· The address mode together with their assembly-language forms and associated costs are as follows:

 Mode

 Form

Address

Added-Cost
1. absolute

M

M

1

2. register

R

R

0

3. indexed

C(R)

C + contents (R)

1

4. indirect register

*R

contents (R)

0

5. indirect indexed

*C(R)

contents (C + Contents (R))
1

Mode

 Form

Constant

Added-Cost
6. literal

#c

c

1

· Instruction Cost

· Cost of an instruction is one plus the cost associated with the source and destination address modes

· Cost corresponds to the length (in words) of the instruction

· When space is important, we should clearly minimize instruction length

Some Example
1. MOV R0, R1

cost 1 (since it copies one word of memory)

2. MOV R5, M

cost 2 (since address of memory location M takes one word)

3. ADD #1, R3

cost 2 (since constant 1 takes one word)

4. SUB 4(R0), *12(R1)

cost 3 (since value of contents (contents (12+ contents (R1)))-

 contents (4 + contents (R0)) stored in *12(R1). Here 12 and 4 takes two words)

Example:

Consider
a=b+c. If a, b and c are simple variable in distinct memory location then

1.
MOV b, R0

cost 2

ADD c, R0

cost 2

MOV R0, a

cost 2

Total cost
6

2.
MOV
b, a

3

ADD c, a

3

Total Cost 6

3. Now Assume ​​​R0, R1, R2contains the address of a, b and c. Then

4. MOV *R1, *R0

cost 1

ADD *R2, *R0

cost 1

5. Total cost 2

6. Assume that R1 and R2 contains the values of b and c. Then

ADD
R2, R1

cost 1

MOV
R1, a

cost 2

Total cost 3

So, we must utilize its address capability efficiently.

Basic Block
A basic block is a sequence of consecutive statements in which flow of control enters at the beginning and leaves at the end without halt or possible
