Syntax-Directed Translation

Chapter # 5

Two notations for associating semantic rules with productions

· Syntax-directed definitions: are high-level specifications for translation. Hide many implementation

· Translation: indicates the order in which semantic rules are to be evaluated

Conceptual view of syntax-directed translation

	Input String
	
	 Parse

 Tree
	
	Dependency Graph
	
	Evaluation order of Semantic rules

Evaluation of Semantic rules

· May generate code

· Save information in a symbol table

· Issue error messages

· Perform any other task

Syntax-Directed Definition

· In which each grammar symbol has an associated set of attributes

· Partitioned into two subsets called

· Synthesized attributes and

· Inherited attributes

Consider productions:

E(T+F

E

F(T

T +
F

T(number

 number

T

 number

Consider the expression 3+4.9. This expression can not be evaluated by above syntax tree. Because 3 is integer and 4.9 is real. So, it may be the case that T.type=real and T.type=integer.

Where T.val=3 or T.val=4.9.
Here val attribute is synthesized attribute and type attribute is inherited attribute.

EX:

Syntax-Directed definition for a desk calculator

	Production
	Semantic Rules

	L(E n
	Print (E.val)

	E(E1 + T
	E.val := E1.val + T.val

	E(T
	E.val := T.val

	T(T1 * F
	T.val := T1.val x F.val

	T(F
	T.val := F.val

	F((E)
	F.val := E.val

	F(digit
	F.val := digit.lexval

How can we compute the value of these attributes?

1. The value of synthesized attribute at a node is computed from the values of attributes at the children of that node in the parse tree

2. The value of inherited attribute is computed from the values of attributes at sibling and parent of that node.

Annotated Parse Tree

A parse tree showing the values of attributes at each node is called annotated parse tree

L

L

 n

 n

 E.val = 8

 E

 E.val = 3 +
 T.val = 5

E
 +
 T

 T.val = 3

 F.val = 5

T

 F

 F.val = 3

digit.lexval = 5
 F

 digit.lexval

 digit.lexval = 3

 digit.lexval

Fig1: Annotated parse tree for 3 + 5 n

Fig2: Parse tree for 3 + 5 n

Annotating Parse Tree

The process of computing the values of attributes at each node is called annotating or decorating the parse tree

S-Attributes

A syntax-directed definition that uses synthesized attributes is said to be an S-attribute definition.

Fig3: Annotated Parse tree for 3 * 5 + 4 n

How attribute values are computed

1. When right side of a production is terminal then the value of left nonterminal will be computed from the lexval of right terminal. Consider the production F(digit. The corresponding semantic rules for it is F.val:=digit.lexval. The value of F.val is computed from the value of digit.lexval which is 3.

2. When right side of a production is nonterminel then the value of left nonterminal is computed from the values of children of the nonterminals of right side. Now consider the productions T(T1*F and T(F. The value of second attribute T.val is computed from the semantic rule T.val := F.val. When we apply this rule the value of T.val is computed from the right child F.val and the value of F.val from the right child digit.lexval which is 3. Correspondingly the value of T.val is computed from the semantic rule T.val := T1.val x F.val where T1.val is computed from T.val and F.val is computed from F.val:= digit.lexval.

3. Value at every node is computed according to the direction of 1 and 2

Inherited Attributes

· Whose value at a node in a parse tree is defined in terms of attributes at the parents and / or siblings of that node

· These are convenient for expressing the dependency of a programming language construct.

EX

How an inherited attribute distributes type information to the various identifiers in a declaration.

C declaration is as follows:

Declaration (int a,b;

Declaration (real x,y;

So general structure is:

Declaration (Type Variables;

Now, we can define productions:

D(TV

T(int

T(real

V(V1, id

V(id

	Productions
	Semantic Rules

	D(TV
	V.in := T.type

	T(int
	T.type := integer

	T(real
	T.type := real

	V(V1 , id
	V1.in := V.in,

addtype(id.entry, V.in)

	V(id
	addtype(id.entry, V.in)

Here in first semantic rule V.in = T.type inherit attribute V.in to the type in the declaration.

Fig4: an annotated parse tree for real id1, id2, id3 with inherited attribute in.

Dependency Graphs
· If an attribute b at a node a in a parse tree depends on an attribute c, then the semantic rule for b at that node must be evaluated after the semantic rule that defines c.

· The inter dependencies among the inherited and synthesized attributes at the nodes in a parse tree can be depicted by a directed graph called a dependency graph.

Algorithm for Constructing a Dependency Graph

For each node n in the parse tree do

For each attribute a of the grammar symbol at n do

Construct a node in the dependency graph for a;

For each node n in the parse tree do

For each semantic rule b:= ((c1, c2, , ck)

Associated with the production used at n do

 For I:= 1 to k do

Construct an edge from the node for ci to the node for b;

For example, suppose A.a := ((X.x , Y.y) is a semantic rule for the production A(XY. This rule defines a synthesized attribute A.a that depends on the attributes X.x and Y.y. In the dependency graph there will exist an edge to A.a from X.x and an edge to A.a from Y.y.

Fig5: dependency graph for A(XY

 Fig6: dependency graph for E(E1+E2

Fig7: Dependency graph for parse tree of fig3.

Construction of Syntax Trees for Expressions

Following functions are used to create nodes of syntax trees for expression with binary operators. Each function returns a pointer to a newly created node.

1. mknode(op,left,right): Creates an operator node with label op and two fields containing pointers to left and right.

	op

	left

	right

2. mkleaf(id, entry): Creates an identifier node with label id and a field containing entry, a pointer to the symbol-table entry for the identifier

	id
	

3. mkleaf(num,val): Creates a number node with label num and a field containing val, the value of the number.

	num
	Val

EX: Syntax tree for a-4+c.

Consider p1, p2, p3, p4, p5 are pointer to nodes, and entry_a and entry_c are pointers to symbol-table entries for identifier a and c.

(1) p1 := mkleaf(id, entry_a);

(2) p2 := mkleaf(num, 4);

(3) p3 := mknode(‘(’, p1, p2);

(4) p4 := mkleaf(id, entry_c);

(5) p5 := mknode(‘+’, p3, p4);

	+
	
	

	(
	
	
	
	id
	

to entry for c

	id
	
	
	num
	4

to entry for a

Fig8: Syntax tree for a-4+c

L

n

E.val = 19

+

T.val = 4

E.val = 15

F.val = 4

Digit.lexval = 4

F.val = 5

T.val = 15

T.val = 3

*

F.val = 3

Digit.lexval = 3

Digit.lexval = 5

D

T.type=real

V.in = real

real

V.in = real

V.in = real

Id3

,

,

Id2

Id1

 A. a

X. x

 Y. y

E2. val

E1. val

E. val

Digit. lexval

Digit. lexval

F. val

*

T. val

T. val

F. val

Digit. lexval

F. val

E. val

T. val

+

E. val

n

L

to entry for identifier

