[image: ]
Code optimization:
1. Local common sub expression elimination
[image: ]
[image: ]
2. Global Common subexpressions elimination
[image: ]
[image: ]
[image: ][image: ]
3. Copy Propagation
[image: ]
Assignment of same expression repeats in multiple blocks to multiple variables.
In block 5
[image: ]
Simply remove assignment to x.
4. Dead code elimination
[image: ]
Example 1:
[image: ]
Example 2:
Block 5 is
[image: ]
If x is not used to other following blocks, it could be minimized as
[image: ]

5. Loop Optimization
[image: ]
5.1 Code Motion
[image: ]
5.2 
image7.png




image8.png
Dead-Code Elimination

A variable is live at a point in a program if its value can be used subsequently;
otherwise, it is dead at that point. A related idea is dead or useless code,
statements that compute values that never get used. While the programmer is




image9.png
if {debug) print .., (10.2)

By a data-flow analysis, il may be possible to deduce that each time the pro-
gram reaches this statement, the value of debug is false. Usually, it is
because there is one particular statement

>debuq 1= false




image10.png
Loop Optimizations

We now give a brief introduction to a very important place for optimizations,
namely loops, especially the inner loops where programs tend to spend the
bulk of their time. The running time of a program may be improved if we
decrease the number of instructions in an inner loop, even if we increase the
amount of code outside that loop. Three techniques are important for loop
optimization: code motion, which moves code outside a loop; induction-variabie
elimination, which we apply to eliminate i and j (rom the inner loops B, and

B of Fig. 10.7; and, reduction in sirength, which replaces an expensive opera-
tion by a cheaper one, such as a muliiplication by an addition.




image11.png
while { i <= limit-2 ) /» statement does not change limit =/
Code motion will result in the equivalent of

t = limit-2;
while { i <= £t ) /= statement does not change limit or t =/




image1.png
Function-Preserving Transformations

There are a number of ways in which a compiler can improve a program
without changing the function it computes. Common subexpression elimina-
tion, copy propagation, dead-code elimination, and constant folding are com-
mon examples of such function-preserving transformations. Section 9.8 on the




image2.png
3 1= 31
ty 1= 4#]

ts = altyl

if t; > v goto 8,




image3.png
(b) After

Local common subexpressicn climination.





image4.png
Common Subexpressions

An occurrence of an expression E is called a common subexpression if E was
previously computed, and the values of variables in £ have not changed since
the previous computation. We can avoid recomputing the expression if we can
use the previously computed value. For example, the assignments to t; and




image5.png
After local common subexpressions are eliminated, B still evaluates 4»i
and 4«3, as shawn in Fig. [0.6(b). Both are common subexpressions; in par-
ticular, the three statements

ty = 4%3; ty = altyl; alty) :=x
in B can be replaced by

t\,':= alty); alty) := x




image6.png
Fig. 10.8. Copies introduced during common subexpression elimination.




