Rules of Lexical Analyzer:
· It is the first phase of a compiler

· reads input characters and produce as output a sequence of tokens

· upon receiving a “get next token” command from the parser, it reads input characters until it can identify the next token

· it stripping out from the source program comments and white spaces

· correlate error messages from the compiler with the source program

Why lexical analyzer is separated from parser?

1. Separation of lexical analysis from syntax analysis often allows us to simplify one or the other of these phases

2. Compiler efficiency is improved. Time is spent reading the source program and partitioning it into token. But this is done at lexical analysis. So parser feels comfort.

3. Compiler portability is enhanced. Input alphabet peculiarities and other device-specific anomalies can be restricted

Token

· Are sequences of characters having a collective meaning

· Example: operator, identifier, constant etc

Lexme

· Characters sequence forming a token is called the lexme for the token

· This is matched by the pattern for a token

· Example: int, <, +, pi, 30 etc

Pattern

· the rule by which a token is separated is called a pattern associated with the token

· Example: < or <= or = or >= or >, L(LD)*, etc

	Token
	Sample Lexmes
	Description of pattern

	Const
	Const
	Const

	Relation
	<, <=, =, >, >=, <>
	< / <= / = / > / >= / <>

	Id
	Int, main, roll, std1
	Letter followed by letters/digits

	Literal
	“Enter your name”
	Any character between “ and “

Alphabet

· Denoted by symbol

String

· Over some alphabet is a sequence of symbol

Empty String

· String with zero length

· Denoted by (
Language

· Represent any set of strings over some fixed alphabet

Consider a string s=”banana”

	TERM
	DEFINITION

	prefix of s
	Obtained by removing zero or more trailing symbols of string s; e.g., ban

	suffux of s
	Formed by deleting zero or more of leading symbols of s; e.g., nana

	substring of s
	Obtained by deleting a prefix and a suffix from s; e.g., nan

	proper prefix, suffix, substring of s
	Any nonempty string x that is, respectively, a prefix, suffix or substring of s such that s(x

	subsequence of s
	Any string formed by deleting zero or more not necessarily contiguous symbols from s; e.g., baaa

Operator Used in Language:

	Operator
	Meaning

	|
	Union Operator

	(
	Concatenation Operator

	*
	Kleene Closure Operator

	+
	Positive Closure Operator

	()
	Grouping Operator

Operation on language

Several important operations that can be performed on language

· Union

· Concatenation

· Closer

	OPERATION
	DEFINITION

	union of L and M written L(M
	L(M={s | s is in L or s is in M}

	concatenation of L and M written LM
	LM={st | s is in L and t is in M}

	Kleene closer of L written L*
	L*=(i=0(Li, L* means “ zero or more concatenation of” L

	positive closer of L written L+
	L+ = (i=1(Li, L+ denotes “one or more concatenation of” L

Example:
Consider L ={A, B, C, ….., Z, a, b, c, ……, z} and D={0, 1, 2, 3, ……., 9}

	No
	Operation
	Textual description
	Example

	1
	L (D
	set of letters and digits
	{a, c, 3, e, 5, z}

	2
	LD
	set of strings consisting of letter followed by digit(s)
	{abc, xyz123, PC2}

	3
	L4
	set of all four letters string
	{your, mind, take}

	4
	L*
	set of all strings of letters
	{(, a, class, age }

	5
	L(L(D)*
	set of all strings of letters and digits beginning with a letter
	{roll12, xy25z, a123}

	6
	D+
	set of all strings of one or more digits
	{1, 34, 13, 65, 256}

Regular Expression

Regular expression is a simple expression that define a set precisely for a language

Example: L(L(D)*

Example:

Let L={a, b}

1. Regular expression a|b denotes a set {a, b}

2. Regular expression (a|b)(a|b) denotes a set {aa, ab, ba, bb}. Its equivalent regular expression is aa|ab|ba|bb

3. Regular expression a* denotes a set {(, a, aa, aaa, aaaa, ……}

4. Regular expression (a|b)* denotes a set {(, a, aa, aaa, …., b, bb, bbb, …}

5. Regular expression a|a*b denotes a set {a, b, ab, aab, aaaab,}

Conventions:

To avoid unnecessary parentheses we should follow rules:

6. * has the highest precedence

7. (concatenation has the second highest precedence

8. | has the lowest precedence

Example: (a)|((b)*(c))
(
a|b*c
Lexical Analyzer

Source Program

Parser

token

get next token

symbol table

Fig: Interaction of lexical analyzer with parser

