Finite Automata:
A stalized flowchart – transition diagram is called finite automata(FA). Consist of

· a finite set of state denoted by circle

· a set of transition from one state to another denoted by edge

Of two types

1. Nondeterministic Finite Automata(NFA)

2. Deterministic Finite Automata(DFA)

NFA

A transition diagram, consists of

1. a set of state S

2. a set of input alphabet

3. few transition from one state to another

4. a starting state S(.
5. a finite state F

Notes:

1. Transition on (.

2. More transition on one input symbol from a single state.

Consider regular expression aa*|bb*

For regular expression (ab)*

Algorithm

Thompson’s Construction Algorithm

Input: A regular expression r over an (
Output: A NFA diagram

Method:
a. For (, construct the NFA:

b. For a in (, construct the NFA:

c. for regular expression s|t construct NFA (s|t):

d. for regular expression st construct NFA(st):

e. For regular expression s* construct NFA(s*):

f. For parenthesized RE (s) use it as s

DFA

a special case of NFA in which

1. no state has an (-transition

2. there is exactly one transition on any input symbol from a state(no more transition for an input symbol from a same state)

Fig: NFA for a*b*

Fig: DFA for a*b*

Simulation on DFA

It is very easy to determine whether a DFA accepts an input string, since there is at most one path from the start state labeled by that string. The following algorithm shows how to simulate the behavior of a DFA on an input string.

Algorithm: Simulating a DFA

input: An input string x determined by an end-of-file character eof. A DFA D with start state s0 and set of accepting states F.

output: The answer “yes” if D accepts x; “no” otherwise.

Method: Apply the algorithm in fig bellow to the input string x. The function move (s, c) means there is a transition from s on input character c. The function nextchar return the next character of the input string x.

s= s0;

c= nextchar;

while c
[image: image1.wmf]¹

eof do

s=move(s, c);

c= nextchar;

end;

if s is in F then

return “yes”;

else return “no”;

Now simulate the string ababb using above algorithm.

Two-Stack Simulation of an NFA

We now present an algorithm that, given an NFA N constructed by Thompson’s algorithm and an input string x, determine whether N accepts x.

Algorithm: Simulating an NFA

input: An NFA N constructed by Thompson’s algorithm and an input string x terminated by $. Also given a start state s0, a set of accepting states F.

output: The answer “yes” if N accepts x; “no” otherwise.

method:

The function move(S, a) computes all states that are reachable from a set S by a transition on a. The function (-closure(move(S, a)) computes all the states that are from move(S, a) by zero or more (-transitions. The function nextchar reads a character at a time from x.

S:= (-closure({s0});

a:=nextchar;

while a
[image: image2.wmf]¹

$ do begin

S:= (-closure(move(S, a));

a:=nextchar;

end

if S is in F then

return “yes”

else return “no”

Now Simulate the following NFA by the above algorithm

Start

0

letter

1

2

others

letter/digit

start

0

1

2

3

4

a

b

a

b

(

(

start

0

1

a

b

b

i

f

(

start

start

a

f

i

i

m

n

m

n

f

s

t

(

(

(

(

start

i

m

f

start

s

t

s

(

start

f

m

i

m

(

(

(

1

0

start

a

b

b

1

0

start

a

b

b

0

1

2

3

a

a

a

a

b

b

b

b

start

_1119392361.unknown

