Syntax Analyzer

Roles of Parser

1. obtains string from lexical analyzer

2. verify the string by grammar

3. report any syntax error

4. build up a parse tree

Syntax Errors

· Lexical (misspelling an identifier, keyword, operator)

· Syntactic (arithmetic expression with unbalance parentheses)

· Semantic (operator applied to an incompatible operand)

· Logical (infinity recursive call, abnormal use of expression at condition statement)

Goal of error handler in parser

· report the presence of errors clearly and accurately

· recover from each error quickly

· be able to detect subsequence error

· do not significantly slow down the processing of correct programs

Error Recovery Strategy

· panic mode

· phrase level

· error production

· global correction

Details

1. Panic mode
-- on discovering an error, parser discards input symbols until one of designated set of synchronizing token (;, end, })
-- It is adequate when multiple errors in the same statement are rare.
2. Pharase Level

-- parser perform local correction

-- replace a comma by a semicolon, delete extraneous semicolon, or insert a missing semicolon

3. Error production

-- designer must have a idea of common errors

-- predefine a set of error production

-- solve errors by this productions

4. Global correction

-- few changes in processing an incorrect input string

-- apply minimal change algorithm

-- theoretical, not applicable now.

(Explain grammar from another file)

Derivation
· Start with the unique distinguished symbol

· Derivation
Sequence of strings where a non-terminal is replaced by a production rule in the next step of the derivation
 1. Leftmost Derivation
· A derivation in which only the leftmost non-terminal in any sentential form is replaced at each step.

· Unique derivation for a string for a non ambiguous grammar

· For an ambiguous grammar there may be multiple productions that can replace the non-terminal, thus giving multiple derivations (and resulting parse trees)

 Example:

E(E+E

E(E-E

E(id

input w=id+id-id

E(E-E(E+E-E(id+E-E(id+id-E(id+id-id
Sentential Form: At each step of the derivation, a non-terminal is replaced by a production rule. The replaced string is called sentential form at that derivation step.

 2. Rightmost Derivation
· The rightmost non-terminal is replaced in the derivation process in each step.

· Also referred to as Canonical Derivation

Example:

E(E+E

E(E-E

E(id

input w=id+id-id

E(E+E(E+E-E(E+E-id(E+id-id(id+id-id

Parse Tree

· Is a graphical representation for a derivation

· Abstracts out the information of the derivation process.

Roles of Building a Parse Tree

1. Each interior node of a parse tree is labeled by some non-terminal A

2. The children of the node are labeled by symbols in the right side of the production by which this A was replaced in the derivation

3. The leaves are labeled by terminals

4. The tree is read from left leaves to right leaves

Consider the grammar:

S(cAd

A(ab | a

Input string w=cad. Now a parse tree for this grammar is:

Example:-

Consider E(-E | (E) | E+E | E*E | id

Show the sentence id+id*id has two distinct leftmost derivations.

Ans:-

1. E (E + E (id + E (id + E * E (id + id * E (id + id * id

2. E (E * E (E + E * E (id + E * E (id + id * E (id + id * id

Fig: Two parse tree for id+id*id

Ambiguity
· Depends on characteristic of grammar
· If a grammar has two parse trees or two derivations for a particular string in the language it represents, then it is ambiguous

· If all grammars for a particular language are ambiguous then the language is called Inherently Ambiguous

Ambiguous Grammars

· Has more than one leftmost derivation.

· Has more than one parse tree.

· S (S + S | S - S | a | b

Removing Ambiguity in a Grammars

Consider

[image: image1.png]stmt — if expr then stmt
| if expr then stmr else simt
| other

It could be derived as:

[image: image2.png]stmt — if E| then stmt

 [image: image3.png]sttt - if E| then if E, then S, else §,

Now the problem: is else is for E1 or E2?

Hence, it is ambiguous.

We can remove such ambiguity by:

[image: image4.png]if £, then S| else if £, then S, else §,

Hence rewrite as
[image: image5.png]stmt = if expr then stmt
| else if expr then stmr else stmt

| other

Source Program

lexical analyzer

token

get next token

parse tree

intermediate representation

parser

symbol table

rest of front end

S

c

A

d

a

id

E

+

E

E

E

E

*

id

id

id

id

+

E

E

E

E

*

E

id

(b)

(a)

