Parser's Classification:

Top down parser

=> that starts from a special non-terminal called start symbol

=> parse a string by several derivations.

Bottom up parser

=> that starts from input symbol

=> after derivations, it reach to a special symbol, called start symbol.

==
Types of top down parser

· Recursive-Descent Parser

· Predictive Parser

· Non recursive predictive parser

===
Recursive-Descent Parsing (page 181)

· Top down parsing

· A derivation process

· An attempt to construct a parse tree for an input string.

· May involve backtracking

· Need a set of recursive procedure

· Each procedure associated with each non-terminal of a grammar

==
Example with the use of backtracking(page 182)

Consider the grammar

S (cAd
A (ab | a

Parse of cad

S (cAd

cAd (cabd
try A->ab but fails to match third

input – backup input pointer,

and try another production

cAd (cad
A->a succeeds, accept

===

Tree representation

[image: image1.png]Elimination of Left Recursion

A grammar is left recursive if it has a nonterminal A such that there is a
derivation A £2>Aa for some string «. Top-down parsing methods cannot
handlc left-recursive grammars, so a transformation that climinates left recur-
sion is necded. In Section 2.4, we discussed simple left recursion, wherc there
was one production of the form A ~ Ax. Here we study the general case. In
Scction 2.4, we showed how the lefi-recursive pair of productions A — Ae | B
could be replaced by the non-lefi-recursive productions

A - BA’

A= ad e

without changing the set of strings derivable from A. This rule by itself suf-
fices in many grammars.

S

S

S

c
A
d
c
A
d

c
A
d

a

b

a

(a)

(b)

(c)

Fig: Steps in top-down parse

==
Predictive Parsers (page 182)

· A special case of recursive descent parser

· No backtracking is required

· It is efficient than recursive descent parser

===
Process of removing backtracking

To parse an input string by recursive descent parser that needs no backtracking we have to follow the following rules:

1. Eliminate left recursion from it

2. Left factor the grammar
===
[image: image15.png]E-E+Ti|T

T~T%F|F
F—~(E)|id
E - TE'
E' - +TE' | €
T - FT'
T' = *FT' | €

F ~(E) | id

===
[image: image2.png]Example 4.8, Consider the following grammar for arithmetic expressions.
E-E+T|T -
T=TxF|F (4
F-(E)]|id

[image: image3.png]Eliminating the immediate left recursion (productions of the form A = Aa) to
the productions for £ and then for T, we obtain

E = TE

E' ~ +TE' | e

T - FI’ (4.11)
T = 5FT |e

F - (E)|id In

===

General procedure:

[image: image4.png]No matter how many A-productions there are, we can climinate im
left recursion from them by the following technique. First, we grouy
productions as

A=A lAay | - |Aay [By B! - |Bs
where no B; begins with an A. Then, we replace the A-productions by
A= BA [BA' | - | BaA’

A = oA |apd" | - | oA | €

===
[image: image5.png]Left Factoring

Left factoring is a grammar transformation that is useful for producing a
grammar suitable for predictive parsing. The basic idea is that when it is not
clear which of two alternative productions to use to expand a nonterminal A,

we may be able to rewrite the A-productions to defer the decision until we
have seen enough of the input to make the right choice.

For example, if we have the two productions

stmi — if expr them semt else simt
| if expr then somt

[image: image6.png]on seeing the input token if, we cannot immediately tell which production to
choose to expand stme. In general, if A = P, | aP; are two A-productions,
and the input begins with a'nonempty string derived from a, we do not know
whether to expand A to aff; or to aff,. However, we may defer the decision
by expanding 4 to wA’. Then, after seeing the input derived from a, we
expand A’ to B, or 10 B;. That is. left-factored, the original productions

[image: image7.png]A - ad’
A BB

==

[image: image8.png]Algorithm 4.2. Left factoring a grammar.

Input. Grammar G.

Output. An equivalent left-factored grammar.

Method. For each nonterminal A find the loagest prefix o common to two or
more of its alternatives. If a + €, i.e., there is a nontrivial common prefix,
replace all the' A productions A »aB |aBy | --- | aB, | v where y
represents all alternatives that do not begin with o by

A+ oA |y
A"'Bl'ﬁz' |B-|

Here A’ is a new nonterminal. Repeatedly apply this transformation until no
two alternatives for a nonterminal have a common prefix. [x

===

[image: image9.png]Example 4.10. The following grammar abstracts the dangling-else problem:

S - iEsS | iEtSeS | a

E=b “.1%

After left factoring

[image: image10.png]§ —~ iESS' |a
s —eSle
E-b

==

Hoe to construct a parse tree

Consider an input symbol a, and the nonterminal A to be expand

Now we must know which one of the alternatives of production

That is, the proper alternative must be detectable by looking at only the first symbol it derives. Example:
A((1| (2| … (n

is the unique alternatives that derives a string beginning with a.

===

[image: image11.png]For example, if we bave the productions

stmr = if expr then stme else simt
| while expr do stmt
| begin stmi_fist end

[image: image12.png]then the keywords if, while, and begin tell us which alternative is the only one
that could possibly succeed if we are to find a statement.

===
Example:
If we have the production

A(aTc | +Fb | *bT

Then first symbol a, +, * will say us which alternatives should be parsed.

Nonrecursive Predictive parsing (page 186)

Nonrecursive Predictive parser can be built by maintaining a stack explicitly.

Example of nonrecursive predictive parser is table driven predictive parser.

Table Driven Predictive Parsing
Input buffer, stack, parsing table and output stream

Input buffer
text to parse

Stack

Initially contains start symbol S on top of $
Always contains sequence of grammar symbols

Parsing table

Two-dimensional array M[A,a]

A -- Nonterminal

a -- terminal or $

Entries are either

· grammar production to be applied when looking at input symbol a and grammar symbol A, or

· special token error

Output stream

Records actions of the parser

Control Structure to the Step of Constructing Table (page 186)

	
	a
	+
	b
	$

[image: image14.png]NONTER- v INPUT SYMBOL

Fig. 4.15. Parsing table M for grammar (4.11).

 OUTPUT

	X

	Y

	Z

	$

Fig: Model of a non recursive predictive Parser

The parser is controlled by a program that behaves as follows:

Consider X, the top symbol of stack and a the current input symbol.

Then there are three possibilities.

1. If X=a=$, Terminate and successful completion

2. If X=a<>$, pop X off stack, advanced the input pointer to the next input symbol

3. If X is nonterminal, Pick value M[X,a]. This is a production. For example M[X,a]={X=>UVW}. Then replace X in the stack by WVU so that U becomes stack top.
Example:

· Left box contains the grammar and it’s eliminated form of left recursion.

· Right table is a parser table M, the process of generating table M is not shown here.

 Fig: Given Grammar

Nonrecursive Predictive Parsing Algorithm
Input: A string w and a parser table M

Output: Left most derivation (a set of production), otherwise error indication

Method:
Initially Stack contains $S, where S is start symbol

Input Buffer contains w$

Given a parser table M

set ip to first symbol of w$;

repeat

let X be the top of stack and a be the symbol pointed to by ip
if X is a terminal or $ then

if X=a then

· pop X from the stack

· Advanced ip
 else error

else

 if M[X, a]=X(Y1Y2…….Yk then

· pop X from the stack

· push Yk, Yk-1,………Y1 onto stack with Y1 on top

· output the production X(Y1Y2…….Yk
 else error

until X=$

Example:

Consider the following grammar and an input id+id*id.

Now you should parse the input using the grammar with left most derivation.

 [image: image13.png]NONTER-
MINAL

INPUT SYMBOL

m SN M,

Ans:

	Stack
	Input
	Output

	$E
	id+id*id$
	

	$E´T
	id+id*id$
	E(TE´

	$E´T´F
	id+id*id$
	T(FT´

	$E´T´id
	id+id*id$
	F(id

	$E´T´
	 +id*id$
	

	$E´
	 +id*id$
	T´((

	$E´T+
	 +id*id$
	E´(+TE´

	$E´T
	 id*id$
	

	$E´T´F
	 id*id$
	T(FT´

	$E´T´id
	 id*id$
	F(id

	$E´T´
	 *id$
	

	$E´T´F*
	 *id$
	T´(*FT´

	$E´T´F
	
id$
	

	$E´T´id
	
id$
	F(id

	$E´T´
	
 $
	

	$E´
	
 $
	T´((

	$
	
 $
	E´((

Predictive Parsing Program

Parsing Table

 M

