Bottom-Up Parsing

· Most flexible parsing method: method of choice for automatically generated parse tables. Also called shift-reduce parsing

· For a given string, builds a parse tree starting at the leaves and reaches the root

· A rightmost derivation in reverse

· Shift step places a symbol and state on the stack
· Reduction steps locate a substring matching the right hand side of a production, and replace b a symbol on the left of the production

Example

S (aABe

A (Abc | b

B (d

· Reduce abbcde to S through the sentential forms

abbcde, aAbcde, aAde, aABe, S

· In reverse, it is

S (rm aABe (rm aAde (rm aAbcde (rm abbcde

· With the string aAbcde we chose the production
A (Abc rather than A (b or B (d

· What we chose was a handle

· Handle

· A substring of the right side of production, and

· Reduction to the left side non-terminal represents a step along reverse of a rightmost derivation

· Not all matching substrings are handles …

Handles

· A handle is a substring that matches the right side of a production, which when reduced (to the left side), represents one step along the reverse of a rightmost derivation

· “… a handle of a right-sentential form (is a production A((and a position in (where the string (may be found and replaced by A to produce the previous right-sentential form in a rightmost derivation of (. That is, if
S (*rm (Aw (rm ((w, then A((in the position following (is a handle of ((w …”

· In the example stated above abbcde is a right-sentential form whose handle is A(b at position 2. Likewise aAbcde is a right-sentential form whose handle is A(Abc at position 2. (Sometimes we say the substring (is a handle of ((w if the position of (and the production of A((we have in mind are clear.)
· If a grammar is unambiguous, every right-sentential form has exactly one handle
Handle Pruning

· Rightmost derivation in reverse can be obtained by “handle pruning”.
· Starting with string of terminals w, if w is a sentence of the grammar, then w=(n where (n is the nth right-sentential form of some rightmost derivation.
S(rm (0 (rm (1 (rm (2 … (rm (n-1 (rm (n (rm w

· Locate the handle (n in (n and replace by the left side of some production An ((n to obtain the
(n-1)st right-sentential form (n-1
Given Grammar:

E(id|E*E|E+E

Given String w=id1+id2*id3.
[image: image1.png]RIGHT-SENTENTIAL FORM { HANDLE | REDUCING PRODUCTION
id, + id, * id, id, E —id
E +id, x id, id, E-id
E + E % id, id; E -id
E+ExE E *E E—-ExFE
" E+E\|\ E+E |E-E+E
E

Fig. 4.21. Reductions made by shift-reduce parser.

· Parse table gives rules to find these handles
Implementation

A stack and an input buffer is used in this technique.

· Stack contains grammar symbols

· Where initially stack contains $

· Input buffer initially contains the string w$.
repeat:

1. The parser shifts input symbols into stack until a handle appears on the top of the stack. Every handle will eventually appear at the top of stack!

2. When the right end of the handle is at the top of the stack, replace the handle with the left side of its production.
· This is called reducing the handle

3. if an error occurs then terminate and announce unsuccessful completion

Untill (stack contains $S and input buffer contains $)

4. Successful completion

Example:

Given Grammar:

E(id|E*E|E+E

Given String w=id1+id2*id3.
Initially:

Loop execution cycle 1:

Step 1 of repeat loop:

Step 2 of repeat loop:

Loop execution cycle 2:

Step 1 of repeat loop:

Step 2 of repeat loop:

Loop execution cycle 3:

Step 1 of repeat loop:

Step 2 of repeat loop:

Further step 2 of repeat loop:

Loop execution cycle 4:

Step 1 of repeat loop:

Step 2 of repeat loop:

Loop execution cycle 5:

Step 1 of repeat loop:

Step 2 of repeat loop:

Further step 2 of repeat loop:

Now Stack contains $E and pointer in input buffer to $

· Hence, exit repeat loop

Now execute step 4 and declare successful.

Action of a shift-reduce parser
There actually four possible actions a shift-reduce parser can take:

1. Shift Action: The next input symbol is shifted onto the top of the stack

2. Reduce Action: When the right end of a handle appears at the top of stack, it replace this handle from the stack with the left end of the handle's production.

3. Accept Action: The parser announces successful completion of parsing

4. Error Action: If an error occurs, it calls an error recovery routine.

Example
Show the step of parsing the input symbol id + id * id according to grammar E(E+E|E*E|(E)|id by the action of shift-reduce parser.

	ON STACK
	REMAINING INPUT
	NEXT ACTION

	$
	id1+id2*id3$
	Shift

	$id1
	+id2*id3$
	reduce by E(id

	$E
	+id2*id3$
	Shift

	$E+
	id2*id3$
	Shift

	$E+id2
	*id3$
	reduce by E(id

	$E+E
	*id3$
	Shift

	$E+E*
	id3$
	Shift

	$E+E*id3
	$
	reduce by E(id

	$E+E*E
	$
	reduce by E(E*E

	$E+E
	$
	reduce by E(E+E

	$E
	$
	Accept

	ON STACK
	REMAINING INPUT
	NEXT ACTION

	$
	id1+id2*id3$
	Shift

	$id1
	+id2*id3$
	reduce by E(id

	$E
	+id2*id3$
	Shift

	$E+
	id2*id3$
	Shift

	$E+id2
	*id3$
	reduce by E(id

	$E+E
	*id3$
	Reduce by E=> E+E

	$E
	*id3$
	Shift

	$E*
	id3$
	shift

	$E*id3
	$
	reduce by E(id

	$E*E
	$
	reduce by E(E*E

	$E
	$
	Accept

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
$�
�
�
id1�
+�
id2�
*�
id3�
$�
�
�
Stack�
�
�
Input buffer w$�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
id1�
�
�
�
�
�
�
�
�
�
�
$�
�
�
id1�
+�
id2�
*�
id3�
$�
�
�
Stack�
�
�
Input buffer w$�
�

Given Grammar:

E(id|E*E|E+E

Given Grammar:

E(id|E*E|E+E

Given Grammar:

E(id|E*E|E+E

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
E�
�
�
�
�
�
�
�
�
�
�
$�
�
�
id1�
+�
id2�
*�
id3�
$�
�
�
Stack�
�
�
Input buffer w$�
�

Given Grammar:

E(id|E*E|E+E

�
�
�
�
�
�
�
�
�
�
�
+�
�
�
�
�
�
�
�
�
�
�
E�
�
�
�
�
�
�
�
�
�
�
$�
�
�
id1�
+�
id2�
*�
id3�
$�
�
�
Stack�
�
�
Input buffer w$�
�

Given Grammar:

E(id|E*E|E+E

�
�
�
�
�
�
�
�
�
�
�
+�
�
�
�
�
�
�
�
�
�
�
E�
�
�
�
�
�
�
�
�
�
�
$�
�
�
id1�
+�
id2�
*�
id3�
$�
�
�
Stack�
�
�
Input buffer w$�
�

Given Grammar:

E(id|E*E|E+E

id2�
�
�
�
�
�
�
�
�
�
�
+�
�
�
�
�
�
�
�
�
�
�
E�
�
�
�
�
�
�
�
�
�
�
$�
�
�
id1�
+�
id2�
*�
id3�
$�
�
�
Stack�
�
�
Input buffer w$�
�

Given Grammar:

E(id|E*E|E+E

E�
�
�
�
�
�
�
�
�
�
�
+�
�
�
�
�
�
�
�
�
�
�
E�
�
�
�
�
�
�
�
�
�
�
$�
�
�
id1�
+�
id2�
*�
id3�
$�
�
�
Stack�
�
�
Input buffer w$�
�

Given Grammar:

E(id|E*E|E+E

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
E�
�
�
�
�
�
�
�
�
�
�
$�
�
�
id1�
+�
id2�
*�
id3�
$�
�
�
Stack�
�
�
Input buffer w$�
�

Given Grammar:

E(id|E*E|E+E

�
�
�
�
�
�
�
�
�
�
�
*�
�
�
�
�
�
�
�
�
�
�
E�
�
�
�
�
�
�
�
�
�
�
$�
�
�
id1�
+�
id2�
*�
id3�
$�
�
�
Stack�
�
�
Input buffer w$�
�

id3�
�
�
�
�
�
�
�
�
�
�
*�
�
�
�
�
�
�
�
�
�
�
E�
�
�
�
�
�
�
�
�
�
�
$�
�
�
id1�
+�
id2�
*�
id3�
$�
�
�
Stack�
�
�
Input buffer w$�
�

Given Grammar:

E(id|E*E|E+E

Given Grammar:

E(id|E*E|E+E

�
�
�
�
�
�
�
�
�
�
�
*�
�
�
�
�
�
�
�
�
�
�
E�
�
�
�
�
�
�
�
�
�
�
$�
�
�
id1�
+�
id2�
*�
id3�
$�
�
�
Stack�
�
�
Input buffer w$�
�

Given Grammar:

E(id|E*E|E+E

E�
�
�
�
�
�
�
�
�
�
�
*�
�
�
�
�
�
�
�
�
�
�
E�
�
�
�
�
�
�
�
�
�
�
$�
�
�
id1�
+�
id2�
*�
id3�
$�
�
�
Stack�
�
�
Input buffer w$�
�

Given Grammar:

E(id|E*E|E+E

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
E�
�
�
�
�
�
�
�
�
�
�
$�
�
�
id1�
+�
id2�
*�
id3�
$�
�
�
Stack�
�
�
Input buffer w$�
�

