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Prolog Programming for AI

• Outlines:
 Types of Objects

 Operations on Lists

 …
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Types of Objects…
• Prolog provides for-

– numbers,

– atoms,

– lists,

– tuples, and

– patterns.
• The types of objects that can be passed as arguments. Facts

and rules are used as data and data is often passed in the
arguments to the predicates.
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Types of Objects…

• Simple Types:

– Numbers: Include integer numbers and real numbers.

– Variables: Variables are character strings beginning with a
capital letter. For example: Result X.

– Atoms: Atoms are either quoted character strings or unquoted
strings beginning with a small letter; ‘Sarah Jones’ anna.
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Types of Objects…
• Composite Types:

– Lists are the most common data structure in Prolog. They
are much like the array in that they are a sequential list of
elements.

– In addition to lists, Prolog permits arbitrary patterns as
data. The patterns can be used to represent tuples.

– Prolog does not provide an array type. But arrays may be
represented as a list, and the multidimensional arrays as a
lists of lists.
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Types of Objects…
• Lists:

– The list is a simple data structure widely used in non-numeric
programming. A list is a sequence of any number of items. A list is
designated in Prolog by square brackets ([ ]). An example of a list is:

[dog, cat, mouse]

– Elements in a Prolog list are ordered, even though there are no indexes.

– The list is either empty or non-empty. The list can be viewd as
consisting of two things:

1) The first item, called the head of the list

2) The remaining part of the list, called the tail.

– Here, the head is dog and the tail is the list of [cat, mouse]. 
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Types of Objects…
• Lists:

– In general, the head can be anything and the tail has to be a list. The 
head and the tail are combined into a structure by a special functor:

(Head, Tail)

– So, the list can be represented as- (dog, .(cat, .(mouse, [])))

– Also, we can list any number of elements by  vertical bar ‘|’:

[Head | Tail] or [a, b, c] = [a | [b,c]] = [a,b|[c]]

– The list can be represented by a special case of binary tree:
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Types of Objects…
• Tuples: 

– Records or tuples are represented as patterns. Here is an example:

book(title(lab_Manual),  author(aaby, anthony), publisher(springer), 
date(1991))

– The elements of a tuple are accessed by pattern matching. 

book(Title, Author, Publisher, Date).

author(LastName, FirstName, MiddleName).

publisher(Company, City).
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Operations on Lists…
• Lists can be used to represent sets, although there is a difference:

– The order of elements in a set does not matter while the order of items
in list does;

– Also the same element can occur repeatedly in a list.

• The most operations on lists are similar to those on sets. Among
them are:

– Checking whether some object is an element of a list (set membership)

– Concatenation of two list, obtaining third list (union of sets)

– Adding new item to a list, or deleting some object from it.
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Operations on Lists…
• Membership: member(X, L)

– Where X is an object and L is a list. The goal is true if X occurs in L. 
For example:

– member(b, [a, b, c]) is true;

– But, member(b, [a, [b, c]]) is not true.

– The program for membership is based on the following-

X is a member of L if either:

1) X is the head of L, or 

2) X is a member of the tail of L.

– This can be written in two clauses:

member(X, [X | Tail]).

member(X, [Head | Tail]) :- member (X, Tail).
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Operations on Lists…
• Concatenation: conc(L1, L2, L3)

– Here, L1 and L2 are two lists, and L3 is their concatenation.

– For example:

?- conc([a,b,c], [1,2,3], L).

L = [a,b,c,1,2,3]

– We can use ‘conc’ in the reverse direction for decomposing a given list 
into two lists:

?- conc(L1, L2, [a,b,c]).

• L1 = [] L2 = [a,b,c]

• L1 = [a] L2 = [b,c]

• L1 = [a,b] L2 = [c]

• L1 = [a,b,c] L2 = []
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Operations on Lists…
• Example-10. Union of two 

sets:
Prolog program:

union([], X, X) :- !.

union([X|R], Y, Z) :-

member(X, Y), union (R, Y, Z).

union([X|R], Y, [X|Z]) :-

union (R, Y, Z).

Query:

?- union([a,b,c], [c,d,e], R).

R = [a,b,c,d,e]
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• Example-11. Intersection:
Prolog program:

intersect([], X, []) :- !.

intersect([X|R], Y, [X|T]) :-

member(X, Y), intersect (R, Y, T).

intersect([X|R], Y, Z) :-

intersect (R, Y, Z).

Query:

?- intersect([a,b,c], [c,d,e], R).

R = [c]



Operations on Lists…
• Example-12. Adding an Item:

add(X, L, [X | L]).

X is a new item added to the list L. 
X becomes new head.

• In general, the operation of inserting
X in any place in the list, can be
defined by the clause:

insert(X, List, BiggerList) :-

del(X, BiggerList, List).
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• Example-13. Deleting an 
Item:

del(X, L, L1)

• The list L1 is equal to the list L with the 
item X removed. The ‘del’ relation can be 
defined as follows:

(1) If X is head then the list after deletion 
is the tail of the list. 

(2) If X is in tail then it is deleted from 
there.

del(X, [X | Tail], Tail).

del(X, [Y | Tail], [Y | Tail1]) :-

del(X, Tail, Tail1).



Operations on Lists
• Example-14. Sorting lists: Prolog BubbleSort program
gt(X,Y) :- X > Y. 

% A useful swap in List?

bsort(L, S) :- swap(L, L1), !, bsort(L1, S). 

% list is already sorted

bsort(S, S). 

% Swap first two

swap([X,Y|R], [Y,X|R]) :- gt(X,Y). 

Swap elements in tail

swap([Z|R], [Z|R1]) :- swap(R, R1).

?- bsort([5,7,3,6,8,9,2,6], S). 

S = [2, 3, 5, 6, 6, 7, 8, 9] ;
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TO BE CONTINUED…
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