
Artificial Intelligence

1Prolog Programming for AI

Lecture 19

Prolog Programming for AI

Prepared by:
Md. Mijanur Rahman, Prof. Dr.
Dept. of CSE, Jatiya Kabi Kazi Nazrul Islam University

Email: mijanjkkniu@gmail.com

Prolog Programming for AI

• Outlines:
 Types of Objects

 Operations on Lists

 …

Prolog Programming for AI 2

Types of Objects…
• Prolog provides for-

– numbers,

– atoms,

– lists,

– tuples, and

– patterns.
• The types of objects that can be passed as arguments. Facts

and rules are used as data and data is often passed in the
arguments to the predicates.

Prolog Programming for AI 3

Types of Objects…

• Simple Types:

– Numbers: Include integer numbers and real numbers.

– Variables: Variables are character strings beginning with a
capital letter. For example: Result X.

– Atoms: Atoms are either quoted character strings or unquoted
strings beginning with a small letter; ‘Sarah Jones’ anna.

Prolog Programming for AI 4

Types of Objects…
• Composite Types:

– Lists are the most common data structure in Prolog. They
are much like the array in that they are a sequential list of
elements.

– In addition to lists, Prolog permits arbitrary patterns as
data. The patterns can be used to represent tuples.

– Prolog does not provide an array type. But arrays may be
represented as a list, and the multidimensional arrays as a
lists of lists.

Prolog Programming for AI 5

Types of Objects…
• Lists:

– The list is a simple data structure widely used in non-numeric
programming. A list is a sequence of any number of items. A list is
designated in Prolog by square brackets ([]). An example of a list is:

[dog, cat, mouse]

– Elements in a Prolog list are ordered, even though there are no indexes.

– The list is either empty or non-empty. The list can be viewd as
consisting of two things:

1) The first item, called the head of the list

2) The remaining part of the list, called the tail.

– Here, the head is dog and the tail is the list of [cat, mouse].

Prolog Programming for AI 6

Types of Objects…
• Lists:

– In general, the head can be anything and the tail has to be a list. The
head and the tail are combined into a structure by a special functor:

(Head, Tail)

– So, the list can be represented as- (dog, .(cat, .(mouse, [])))

– Also, we can list any number of elements by vertical bar ‘|’:

[Head | Tail] or [a, b, c] = [a | [b,c]] = [a,b|[c]]

– The list can be represented by a special case of binary tree:

Prolog Programming for AI 7

Types of Objects…
• Tuples:

– Records or tuples are represented as patterns. Here is an example:

book(title(lab_Manual), author(aaby, anthony), publisher(springer),
date(1991))

– The elements of a tuple are accessed by pattern matching.

book(Title, Author, Publisher, Date).

author(LastName, FirstName, MiddleName).

publisher(Company, City).

Prolog Programming for AI 8

Operations on Lists…
• Lists can be used to represent sets, although there is a difference:

– The order of elements in a set does not matter while the order of items
in list does;

– Also the same element can occur repeatedly in a list.

• The most operations on lists are similar to those on sets. Among
them are:

– Checking whether some object is an element of a list (set membership)

– Concatenation of two list, obtaining third list (union of sets)

– Adding new item to a list, or deleting some object from it.

Prolog Programming for AI 9

Operations on Lists…
• Membership: member(X, L)

– Where X is an object and L is a list. The goal is true if X occurs in L.
For example:

– member(b, [a, b, c]) is true;

– But, member(b, [a, [b, c]]) is not true.

– The program for membership is based on the following-

X is a member of L if either:

1) X is the head of L, or

2) X is a member of the tail of L.

– This can be written in two clauses:

member(X, [X | Tail]).

member(X, [Head | Tail]) :- member (X, Tail).

Prolog Programming for AI 10

Operations on Lists…
• Concatenation: conc(L1, L2, L3)

– Here, L1 and L2 are two lists, and L3 is their concatenation.

– For example:

?- conc([a,b,c], [1,2,3], L).

L = [a,b,c,1,2,3]

– We can use ‘conc’ in the reverse direction for decomposing a given list
into two lists:

?- conc(L1, L2, [a,b,c]).

• L1 = [] L2 = [a,b,c]

• L1 = [a] L2 = [b,c]

• L1 = [a,b] L2 = [c]

• L1 = [a,b,c] L2 = []

Prolog Programming for AI 11

Operations on Lists…
• Example-10. Union of two

sets:
Prolog program:

union([], X, X) :- !.

union([X|R], Y, Z) :-

member(X, Y), union (R, Y, Z).

union([X|R], Y, [X|Z]) :-

union (R, Y, Z).

Query:

?- union([a,b,c], [c,d,e], R).

R = [a,b,c,d,e]

Prolog Programming for AI 12

• Example-11. Intersection:
Prolog program:

intersect([], X, []) :- !.

intersect([X|R], Y, [X|T]) :-

member(X, Y), intersect (R, Y, T).

intersect([X|R], Y, Z) :-

intersect (R, Y, Z).

Query:

?- intersect([a,b,c], [c,d,e], R).

R = [c]

Operations on Lists…
• Example-12. Adding an Item:

add(X, L, [X | L]).

X is a new item added to the list L.
X becomes new head.

• In general, the operation of inserting
X in any place in the list, can be
defined by the clause:

insert(X, List, BiggerList) :-

del(X, BiggerList, List).

Prolog Programming for AI 13

• Example-13. Deleting an
Item:

del(X, L, L1)

• The list L1 is equal to the list L with the
item X removed. The ‘del’ relation can be
defined as follows:

(1) If X is head then the list after deletion
is the tail of the list.

(2) If X is in tail then it is deleted from
there.

del(X, [X | Tail], Tail).

del(X, [Y | Tail], [Y | Tail1]) :-

del(X, Tail, Tail1).

Operations on Lists
• Example-14. Sorting lists: Prolog BubbleSort program
gt(X,Y) :- X > Y.

% A useful swap in List?

bsort(L, S) :- swap(L, L1), !, bsort(L1, S).

% list is already sorted

bsort(S, S).

% Swap first two

swap([X,Y|R], [Y,X|R]) :- gt(X,Y).

Swap elements in tail

swap([Z|R], [Z|R1]) :- swap(R, R1).

?- bsort([5,7,3,6,8,9,2,6], S).

S = [2, 3, 5, 6, 6, 7, 8, 9] ;

Prolog Programming for AI 14

TO BE CONTINUED…

Prolog Programming for AI

Prolog Programming for AI 15

