
Artificial Intelligence

1Prolog Programming for AI

Lecture 21 

Prolog Programming for AI

Prepared by:
Md. Mijanur Rahman, Prof. Dr. 
Dept. of CSE, Jatiya Kabi Kazi Nazrul Islam University

Email: mijanjkkniu@gmail.com



Lecture Outlines

• Prolog Programs:
 Prolog Programs on Tree and Graph Problems.

 Prolog Programs for DFA and NFA

Prolog Programming for AI 2



Example-20: Prolog program for Tree…

• Consider acyclic directed graph:

• Graph G is represented by a set of connected edges:

G = {edge(p, q), edge(q, r), edge(q, s), edge(s, t)}

• Write Prolog program to check whether there is a route from one node to 
another node.

Prolog Programming for AI 3

p

q

r s

t



Example-20: Prolog program for Tree

• Define Route:

• Route from node A to B is defined as follows:
– Route from A to B, if there is an edge from A some node C and a route from C to B.

– Route from A to B, if there is a direct edge from A to B.

• Prolog Program:

edge(p, q).

edge(q, r).

edge(q, s).

edge(s, t).

route(A, B) :- edge (A, C), route(C, B).

route(A, B) :- edge(A, B).

• Query: Check whether there exist a route between p and t.

Prolog Programming for AI 4

p

q

r s

t



Example-21: Prolog program for Graph & DFA…

• When a state table program are loaded into Prolog, the parser is used to
check whether inputs to the DFA are acceptable or not.

• Consider a state diagram for a DFA that accepts the language
(a,b)*ab(a,b)* is as follows:

• Write a program to simulate a parser for an arbitrary deterministic finite
automaton (DFA).

Prolog Programming for AI 5



Example-21: Prolog program for Graph & DFA…

• In Prolog, an automaton can be specified by three relations:
1) A unary relation ‘start’ which defines the initial state of the automation;

2) A unary relation ‘final’ which defines the final states of the automation;

3) A three-argument relation ‘delta’ which defines the state transitions so that: 
delta(S1, X, S2); this means that a transition from S1 to S2 is possible when 
the current input symbol X is read.

Prolog Programming for AI 6



Example-21: Prolog program for Graph & DFA…

• Prolog code: 

• Facts:
start(0).

delta(0,a,1). 

delta(0,b,0). 

delta(1,a,1). 

delta(1,b,2). 

delta(2,a,2). 

delta(2,b,2). 

final(2).

Prolog Programming for AI 7



Example-21: Prolog program for Graph & DFA…

• The simulator is programmed as a unary relation parse (L) and a binary
relation trans(S,L):

• The parse (L) relation can be defined by:

1) Starting from the initial state S and calling the relation trans(S,L).

• The trans(S,L)relation can be defined by two clauses:

1) The empty string, [], is accepted from a state S if S is a final state.

2) A non-empty string is accepted from S if reading the first symbol in the string can bring
the automation into some state, S1 and the rest of the string is accepted from S1.

• Prolog Rules:
parse(L) :- start(S), trans(S,L). 

trans(S,[]):- final(S), write(S), write(' '), write([]), nl.

trans(S,[A|B]) :- delta(S,A,S1), /* S ---A---> S1 */ 

write(S), write(' '), 

write([A|B]), nl, trans(S1,B). 

Prolog Programming for AI 8



Example-21: Prolog program for Graph & DFA

• Suppose that both the driver program and the state table program are 
loaded ... 

• ?- parse([b,b,a,a,b,a,b]). 

0 [b,b,a,a,b,a,b] 

0 [b,a,a,b,a,b] 

0 [a,a,b,a,b] 

1 [a,b,a,b] 

1 [b,a,b] 

2 [a,b] 

2 [b] 

2 [] 

yes 

Prolog Programming for AI 9

?- parse([b,b,a]). 

0 [b,b,a] 

0 [b,a] 

0 [a] 

no 



Example-22: Prolog program for Graph & NFA…

• Simulating a NFA in Prolog, an automaton can be specified by three 
relations:
1) A unary relation ‘final’ which defines the final states of the automation;

2) A three-argument relation ‘trans’ which defines the state transitions so that: 
trans(S1, X, S2)

This means that a transition from S1 to S2 is possible when the current input 
symbol X is read;

3) A binary relation ‘silent’

Silent(S1, S2)

Meaning that a silent move is possible from state S1 to S2.

Prolog Programming for AI 10



Example-22: Prolog program for Graph & NFA…

• Consider the following non-deterministic finite automaton:

Prolog Programming for AI 11

S1 S2

S3S4

a

b

a

b

b
null

null

• For the given automation, the 
three relations are:

• final(S3).

• trans(S1, a, S1).

• trans(S1, a, S2).

• trans(S1, b, S1).

• trans(S2, b, S3).

• trans(S3, b, S4).

• silent(S2, S4).

• silent(S3, S1).



Example-22: Prolog program for Graph & NFA…

• We will represent input strings as Prolog lists. So, the string ‘aab’
will be represented by [a, a, b].

• The simulator is programmed as a binary relation, accepts(S, X).

• The ‘accepts’ relation can be defined by three clauses:

1) The empty string, [], is accepted from a state S if State is a final state.

2) A non-empty string X is accepted from S if reading the first symbol in
the string X can bring the automation into some state, S1 and the rest
of the string is accepted from S1.

3) A string is accepted from State if the automation can make a silent
move from S to S1 and then accept the whole input string from S1.

Prolog Programming for AI 12



Example-22: Prolog program for Graph & NFA…

• These rules can be translated into Prolog as:

accepts(String, []) :- % Accept empty string

final(S).

accepts(S, [X | R]) :- % Reading 1st symbol

trans(S, X, S1), accepts(S1, R).

accepts(S, String) :- % Silent move

silent(S, S1), accepts(S1, String).

Prolog Programming for AI 13



Example-22: Prolog program for Graph & NFA

• Query:

• Acceptance of the input string aaab:

?- accepts(s1, [a,a,a,b]).

yes

• Initial state for input string ab:

?- accepts(S, [a,b]).

S = s1;

S = s3

• Find the string of length 3 that are accepted from state1.

X1 = a X2 = a X3 = b;

X1 = b X2 = a X3 = b;

Prolog Programming for AI 14



THE END
Prolog Programming for AI

Prolog Programming for AI 15


