Artificial Intelligence

Lecture 24

Uncertainty

Prepared by:

Md. Mijanur Rahman, Prof. Dr.

Dept. of CSE, Jatiya Kabi Kazi Nazrul Islam University Email: mijanjkkniu@gmail.com

Outlines

Methods to handle uncertainty

 Fuzzy Logic
 Bayesian Probability Theory

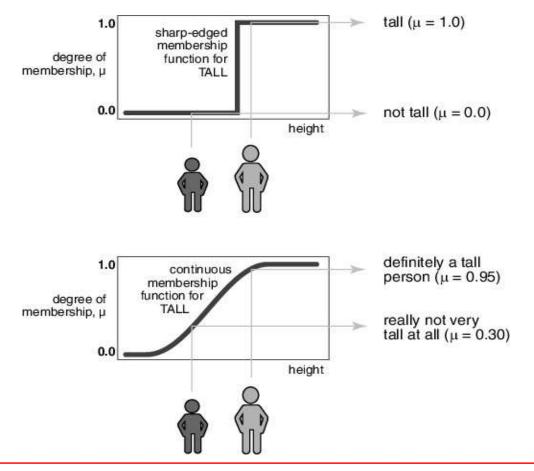
Fuzzy Logic

- Traditional logic and sets are thought of as **crisp**
 - An item is T or F, an item is in the set or not in the set
- Fuzzy logic, based on fuzzy set theory, says that an item is in a set by **f(a) amount**, known as membership value.
 - where a is the item
 - and f is the membership function (which returns a real number from 0 to 1)
- Membership to set A is often written like this:

 $A = \left\{ x / \mu_A(x) \mid x \in X \right\}$

Fuzzy Logic

• Consider the following figure that compares the crisp and fuzzy membership functions for "Tall":



Uncertainty

How to define fuzzy sets?

• A crisp set $C \subseteq S$ is defined by a characteristic function, $\chi_C(s): S \to \{0, 1\}.$ $\begin{bmatrix} 0 & if s \notin C \end{bmatrix}$

$$X_C(s) = \begin{cases} 0 & \text{if } s \notin C \\ 1 & \text{if } s \in C \end{cases}$$

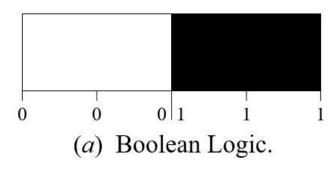
• A fuzzy set $F \subseteq S$ is defined by a membership function, $\mu_F(s): S \rightarrow [0.0, 1.0].$

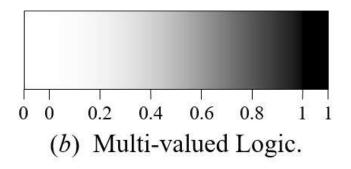
$$\mu_F(s) = \begin{cases} 0.0 & \text{if s is not in } F \\ 0.0 < m < 1.0 & \text{if s is partially in } F \\ 1.0 & \text{if s is totally in } F \end{cases}$$

• $\mu_F(s)$ describes to what *degree s* belongs to F: 1.0 means "definitely belongs", 0.0 means "definitely does not belong", other values indicate intermediate "degrees" of belonging.

How to define fuzzy sets?

• Range of logical values in Boolean and fuzzy logic:





• Consider N, the set of positive integers. Let $F \subset N$ be the set of "small integers".

Let μ_F be like this:

$$u_F(1) = 1.0$$

 $u_F(2) = 1.0$
 $u_F(3) = 0.9$

$$\mu_F(4)=0.8$$

$$\mu_F(50) = 0.001$$

•••

. . .

• μ_F defines a probability distribution for statements such as "X is a small integer".

How to define fuzzy sets?

Short

Degree of

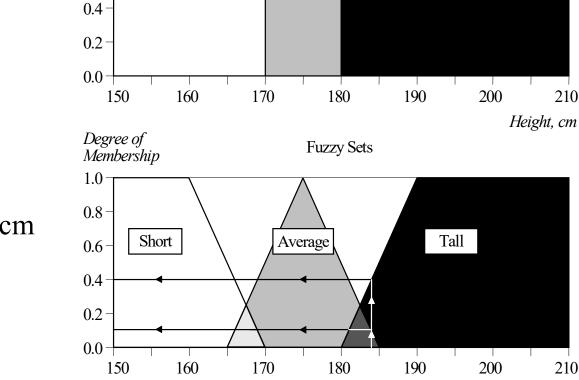
1.0

0.8

0.6

Membership

Sets of short, ٠ average and tall men



Crisp Sets

Average

Tall

.. and a man 184 cm ٠ tall

210

210

Bayesian Probability Theory

• Bayes' Theorem

- In probability theory and statistics, Bayes' theorem (Bayes's law) describes the probability of an event, based on prior knowledge of conditions that might be related to the event.
 - Medical diagnosis is a handy example of Bayes' Theorem. If the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately than simply assuming that the individual is typical of the population as a whole.
 - A patient may have a cold, a flu, pneumonia, rheumatism, and so on. The usual symptoms are high fever, short breath, runny nose, and so on.
 - We need the probabilities (based on statistical data) of all diseases, and the probabilities of high fever, short breath, runny nose in the case of a cold, a flu, pneumonia, rheumatism.
 - We would also like to assume that all relationships between H_j and E are mutually independent.

Bayesian Probability Theory

• Bayes' Theorem

- Bayes' theorem allows us to compute how probable it is that a hypothesis H_i follows from a piece of evidence E (for example, from a symptom or a measurement).
 - The idea is that you are given some evidence $E = \{e_1, e_2, ..., e_n\}$ and you have a collection of hypotheses $H_1, H_2, ..., H_m$
 - The required probability data: $p(H_i|E)$ the probability of H_j , $p(H_i)$ the overall probability of H_i and $p(E|H_i)$ the probability of E given H_j for all possible hypotheses.
 - Bayes' theorem:

$$- p(H_i|E) = \frac{p(E|H_i) * p(H_i)}{\sum_j p(E|H_j) * p(H_j)}$$

Bayesian Probability Theory

• Bayes' Theorem :

$$p(H_i|E) = \frac{p(E|H_i) * p(H_i)}{\sum_j p(E|H_j) * p(H_j)}$$

- If we assume that all the conditional probabilities under summation are independent, we can simplify the formula:

$$p(H_i|E) = \frac{p(E|H_i) * p(H_i)}{p(E)}$$

Uncertainty TO BE CONTINUED...