Artificial Intelligence

Lecture 30

Experts Systemsin Al

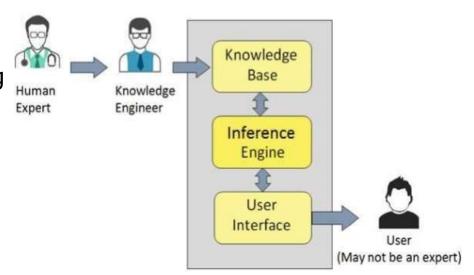


Prepared by:

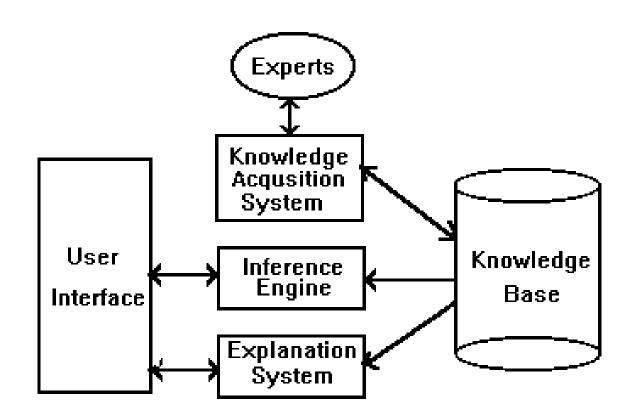
Md. Mijanur Rahman, Prof. Dr.

Dept. of CSE, Jatiya Kabi Kazi Nazrul Islam University.

Email: mijanjkkniu@gmail.com


Lecture Outlines

- Structure of an Expert System
 - To be continued...


Components of Expert Systems

- The components of ES include
 - Knowledge Base
 - Components of Knowledge Base
 - Knowledge representation
 - Knowledge Acquisition
 - Knowledge Engineering
 - Inference Engine
 - Inference Mechanisms:Forward and Backward Chaining
 - User Interface
 - Explanation subsystem
 - Blackboard
 - Knowledge refinement subsystem

Structure of an Expert System

Architecture of a typical Expert System

Expert Systems

Knowledge Base...

- The knowledge base is the collection of facts and rules which describe all the knowledge about the problem domain. It contains domain-specific and high-quality knowledge.
- Knowledge is required to exhibit intelligence. The success of any ES majorly depends upon the collection of highly accurate and precise knowledge.
- The power of problem solving is primarily the consequence of the knowledge base and secondarily on the inference method employed.
- The design of knowledge representation scheme impacts the design of the inference engine, the knowledge updating process, the explanation process and the overall efficiency of the system.
- Therefore the selection of the knowledge representation scheme is one of the most critical decision in ES design.

Knowledge Base...

What is Knowledge?

- The data is collection of facts.
- The information is organized as data and facts about the task domain.
- Data, information, and past experience combined together are termed as knowledge.

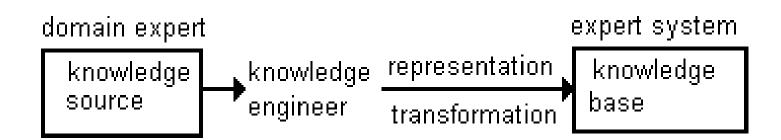
Components of Knowledge Base

- The knowledge base of an ES is a store of both, factual and heuristic knowledge.
 - **Factual Knowledge** It is the information widely accepted by the Knowledge Engineers and scholars in the task domain.
 - Heuristic Knowledge It is about practice, accurate judgement, one's ability of evaluation, and guessing.

Knowledge Base...

Knowledge Representation

 It is the method used to organize and formalize the knowledge in the knowledge base. It is in the form of IF-THEN-ELSE rules.


Knowledge Engineering

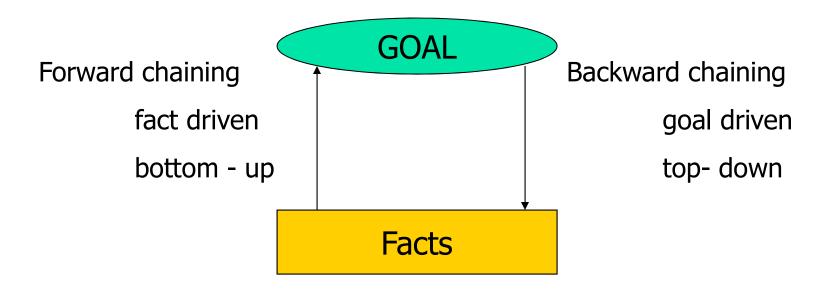
- Knowledge engineering is the process of acquiring specific domain knowledge and building it into the knowledge base. Knowledge extraction can be done by
 - interviews, observation of the expert at work, evaluation of the material used by the expert.
- This process is termed knowledge acquisition. It involves problem definition, implementation, and refinement as well as representing facts and relations acquired from an expert.

Knowledge Base

- Thus, the knowledge base is formed by readings from various experts, scholars, and the **Knowledge Engineers**. The knowledge engineer is a person with the qualities of empathy, quick learning, and case analyzing skills.
- The knowledge engineer also monitors the development of the Expert System (ES).

Knowledge Engineering

- Use of efficient procedures and rules by the Inference Engine is essential in deducting a correct, flawless solution.
 - In case of knowledge-based ES, the Inference Engine
 - Acquires and manipulates the knowledge from the knowledge base to arrive at a particular solution.
 - In case of rule based ES, , the Inference Engine
 - Applies rules repeatedly to the facts, which are obtained from earlier rule application.
 - Adds new knowledge into the knowledge base if required.
 - Resolves rules conflict when multiple rules are applicable to a particular case.
- It controls the reasoning involved when the system is run.

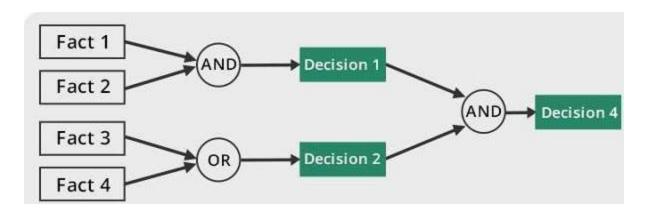


- It has its own mechanism for interpreting the stored knowledge (in the appropriate form), and for sequencing the steps involved in reaching conclusions.
- Inference here means any of the methods by which the system reaches conclusions/solutions.
- To recommend a solution, the Inference Engine uses the following strategies/mechanisms
 - Forward Chaining
 - Backward Chaining

Inference Mechanisms

 The selection of the inference paradigm strongly influences the overall performance of the ES

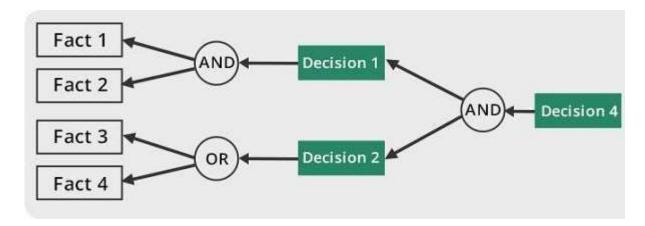
Expert Systems



Inference Mechanisms: Forward Chaining

- It is a strategy of an expert system to answer the question, "What can happen next?"
- Here, the Inference Engine follows the chain of conditions and derivations and finally deduces the outcome.
- It considers all the facts and rules, and sorts them before concluding to a solution.

- Inference Mechanisms: Forward Chaining
- This strategy is followed for working on conclusion, result, or effect.
- For example, prediction of share market status as an effect of changes in interest rates.


Inference Mechanisms: Backward Chaining

- With this strategy, an expert system finds out the answer to the question, "Why this happened?"
- On the basis of what has already happened, the Inference Engine tries to find out which conditions could have happened in the past for this result.

Inference Mechanisms: Backward Chaining

- This strategy is followed for finding out cause or reason.
- For example, diagnosis of blood cancer in humans.

Expert Systems

TO BE CONTINUED...